- 1. An electron is moving along +x direction with a velocity of 6×10^6 ms⁻¹. It enters a region of uniform electric field of 300 V/cm pointing along +y direction. The magnitude and direction of the magnetic field set up in this region such that the electron keeps moving along the x direction will be : [Sep. 06, 2020 (I)]
 - (a) 3×10^{-4} T, along + z direction
 - (b) 5×10^{-3} T, along -z direction
 - (c) 5×10^{-3} T, along + z direction
 - (d) 3×10^{-4} T, along -z direction

1. (c)
$$\vec{E} = 300\,\hat{j}$$
 V/cm = 3×10^4 V/m
 $\vec{V} = 6 \times 10^6\,\hat{i}$
 $E \bigwedge E = 300\,\hat{j}$
V/cm = 3×10^4 V/m
 $\vec{e} \qquad V$
 $V = 6 \times 10^6\,\hat{i}$

 \vec{B} must be in +z axis.

$$q\vec{E} + q\vec{V} \times \vec{B} = 0$$

$$E = VB$$

$$\therefore B = \frac{E}{V} = \frac{3 \times 10^4}{6 \times 10^6} = 5 \times 10^{-3} T$$

Hence, magnetic field $B = 5 \times 10^{-3}$ T along +z direction.